开放世界对象检测(OWOD)是一个具有挑战性的计算机视觉问题,需要检测未知对象并逐渐学习已确定的未知类别。但是,它不能将未知实例区分为多个未知类。在这项工作中,我们提出了一个新颖的OWOD问题,称为未知分类的开放世界对象检测(UC-OWOD)。 UC-OWOD旨在检测未知实例并将其分类为不同的未知类别。此外,我们制定问题并设计一个两阶段的对象检测器来解决UC-OWOD。首先,使用未知的标签意见建议和未知歧视性分类头用于检测已知和未知对象。然后,构建基于相似性的未知分类和未知聚类改进模块,以区分多个未知类别。此外,设计了两个新颖的评估方案,以评估未知类别的检测。丰富的实验和可视化证明了该方法的有效性。代码可在https://github.com/johnwuzh/uc-owod上找到。
translated by 谷歌翻译
深度神经网络的兴起为优化推荐系统提供了重要的驱动力。但是,推荐系统的成功在于精致的建筑制造,因此呼吁神经建筑搜索(NAS)进一步改善其建模。我们提出了NASREC,它是一种训练单个超级网的范式,并通过重量共享有效地产生丰富的模型/子构造。为了克服数据多模式和体系结构异质性挑战,NASREC建立了一个大型的超级网(即搜索空间),以搜索完整的体系结构,而SuperNet结合了多功能操作员的选择和密集的连接性选择,并使人类的密集连接性最小化。 Nasrec的规模和异质性在搜索中构成了挑战,例如训练效率低下,操作员不平衡和降级等级相关性。我们通过提出单操作员任何连接采样,操作员平衡互动模块和训练后微调来应对这些挑战。我们对三个点击率(CTR)预测基准测试的结果表明,NASREC可以胜过手动设计的模型和现有的NAS方法,从而实现最先进的性能。
translated by 谷歌翻译
Scheduled batch jobs have been widely used on the asynchronous computing platforms to execute various enterprise applications, including the scheduled notifications and the candidate pre-computation for the modern recommender systems. It is important to deliver or update the information to the users at the right time to maintain the user experience and the execution impact. However, it is challenging to provide a versatile execution time optimization solution for the user-basis scheduled jobs to satisfy various product scenarios while maintaining reasonable infrastructure resource consumption. In this paper, we describe how we apply a learning-to-rank approach plus a "best time policy" in the best time selection. In addition, we propose an ensemble learner to minimize the ranking loss by efficiently leveraging multiple streams of user activity signals in our scheduling decisions of the execution time. Especially, we observe the cannibalization cross use cases to compete the user's peak time slot and introduce a coordination system to mitigate the problem. Our optimization approach has been successfully tested with production traffic that serves billions of users per day, with statistically significant improvements in various product metrics, including the notifications and content candidate generation. To the best of our knowledge, our study represents the first ML-based multi-tenant solution of the execution time optimization problem for the scheduled jobs at a large industrial scale cross different product domains.
translated by 谷歌翻译
加强学习(RL)在学术界和技术产业中获得了越来越多的吸引力,并推出了各种各样的有影响力的应用和产品。虽然研究正在积极地在许多方面进行(例如,离线RL,性能等),但许多RL从业者面临着基本忽略的挑战:确定设计的马尔可夫决策过程(MDP)是否有效和有意义。本研究提出了一种基于启发式的特征分析方法来验证MDP是否合理。我们认为,适合应用RL的MDP应包含一组状态特征,这些功能对动作和预测性依赖于奖励。我们在构造的环境中测试了我们的方法,表明我们的方法可以识别某些无效的环境制定。据我们所知,对RL问题配方进行有效性分析是一种新颖的方向。我们设想,我们的工具将作为一个动机示例,以帮助从业者更容易地将RL应用于现实世界问题。
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Nearest-Neighbor (NN) classification has been proven as a simple and effective approach for few-shot learning. The query data can be classified efficiently by finding the nearest support class based on features extracted by pretrained deep models. However, NN-based methods are sensitive to the data distribution and may produce false prediction if the samples in the support set happen to lie around the distribution boundary of different classes. To solve this issue, we present P3DC-Shot, an improved nearest-neighbor based few-shot classification method empowered by prior-driven data calibration. Inspired by the distribution calibration technique which utilizes the distribution or statistics of the base classes to calibrate the data for few-shot tasks, we propose a novel discrete data calibration operation which is more suitable for NN-based few-shot classification. Specifically, we treat the prototypes representing each base class as priors and calibrate each support data based on its similarity to different base prototypes. Then, we perform NN classification using these discretely calibrated support data. Results from extensive experiments on various datasets show our efficient non-learning based method can outperform or at least comparable to SOTA methods which need additional learning steps.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译